
The PHP framework
A programmers guide

www.tfyh.org

April 2023

PHP framework programmers guide page 1

http://www.tfyh.org/

Table of Contents
1 Foreword..5

1.1 Licence consideration..5
1.2 System prerequisites..5
1.3 A word on the contents...5

2 tfyh - framework classes...6
2.1 init.php...6
2.2 PDF, PDF_adapted..6

2.2.1 Functions..6
2.3 Tfyh_app_session...7

2.3.1 session_open(), session_close()..7
2.4 Tfyh_audit...7
2.5 Tfyh_backup_handler...7

2.5.1 backup()..7
2.5.2 unmask()...8

2.6 Tfyh_config...8
get_cfg()..8
2.6.1 set_cfg()..8

2.7 Tfyh_cron_jobs..8
2.7.1 run_daily_jobs()..9

2.8 Tfyh_form...9
2.8.1 Form configuration by the definition file..9
2.8.2 Form input elements..9
2.8.3 Form usage...11
2.8.4 Form functions..11

2.9 Tfyh_gallery..12
2.10 Tfyh_list..12

2.10.1 Construction..14
2.10.2 Simple getters...14
2.10.3 Get the list..14

2.11 Tfyh_logger...14
2.11.1 Methods for actions..15
2.11.2 Methods for activities..15
2.11.3 Methods for mass transactions...15

2.12 Tfyh_mail_handler..15
2.12.1 send_mail()...16
2.12.2 store_mail(), get_html(), get_last_index()..16

2.13 Tfyh_menu..16
2.13.1 Menu template file..16
2.13.2 Role hierarchy..17
2.13.3 Subscriptions, Workflows and Concessions...17
2.13.4 Functions..18

2.14 Tfyh_pivot_table...18
2.15 Tfyh_socket...18

2.15.1 Generic functions...18
2.15.2 Record history capture..19
2.15.3 Standard modifications...19
2.15.4 Find records..19
2.15.5 Find a single record..20
2.15.6 Get a record history for display..20
2.15.7 Full table export and import...20

PHP framework programmers guide page 2

2.15.8 Get data base structure information...21
2.15.9 Modify the data base..21

2.16 Tfyh_socket_listener...21
2.17 Tfyh_statistics..21
2.18 Tfyh_token_handler..21
2.19 Tfyh_toolbox..21

2.19.1 functions for session support...22
2.19.2 Data validity checks and formatting..22
2.19.3 File handling..23
2.19.4 CSV support..23
2.19.5 Load throttling...23
2.19.6 Miscellaneous..24

2.20 Tfyh_user..24
2.20.1 Access control..24
2.20.2 Other functions..25

2.21 Tfyh_xml, Tfyh_xml_tag..25
3 Tfyh configuration and resources..26

3.1 The framework settings (config/settings_tfyh)..26
3.1.1 Api settings (deprecated)..26
3.1.2 Config settings (names, tables, pdf parameters)..26
3.1.3 History/maxversions settings...27
3.1.4 Init settings..27
3.1.5 Logger settings..27
3.1.6 Upgrade settings..28
3.1.7 User Settings..28

3.2 Version and copyright (public/version, public/copyright)..............................29
3.3 The tenant settings...29
3.4 Application run time configuration...30
3.5 Other configuration...30
3.6 Styles and resources...30
3.7 Multilanguage support...31

3.7.1 Internationalization resources..31
3.7.2 The i18n language selection..31
3.7.3 The internationalization global function i()...31
3.7.4 Creating a language resource file...31
3.7.5 How to use it...32
3.7.6 Text which shall not be translated..32
3.7.7 Duplicate text..33

4 Tfyh user and session management, forms..34
4.1 Tfyh user and session variables..34

4.1.1 The $_SESSION variable...34
4.1.2 Securing user priviledge authenticity..35

4.2 Tfyh – framework forms..35
4.2.1 A typical form file...35
4.2.2 configparameter_aendern.php...36
4.2.3 dateiablage.php...36
4.2.4 farben_aendern.php...36
4.2.5 login.php and reset_password.php...36
4.2.6 mail_versenden.php and mail_nachlesen.php..37
4.2.7 tabelle_importieren.php..37

4.3 Tfyh – framework pages..37
4.3.1 alle_berechtigungen.php...38
4.3.2 show_actions.php, show_changes.php, show_logs.php...............................38

PHP framework programmers guide page 3

4.3.3 show_lists.php...38
4.3.4 logout.php, construction.php, error.php..38
4.3.5 maintenance.php, upgrade.php..38

5 Acknowledgements..39

PHP framework programmers guide page 4

1 Foreword

In 2017 I started to do some PHP programming and found out that this is a great
option to support any form of business administration. I started to build a club
administration tool which I introduced in my rowing club when they asked me to run
the membership administration. It was well adapted by the club mambers since they
now could manage their data themselves. By and by more functions were added such
as booking boat trailers or providing logbook data.

The other tasks came by. Another club, a youth group and an event booking application
in Corona times. Yet another club, a funding thing.

In order to be able to run that all I harmonized some of the PHP code and the design of
all these applications. That code is explained here for the purpose of being able to
reuse it.

Bonn, Spring 2022

Martin Glade

1.1 Licence consideration

All I do is published under the GNU public license V2.

1.2 System prerequisites

Files will run on any PHP interpreter but need a MySQL data base for data storage to
run with.

1.3 A word on the contents

The harmonized code come in section depending on what it intends to do. Each section
is then a folder on the PHP server, so that all filles can be addressed from all other files
by ../[section]/[file.php]. That is limited in scaling but very easy in handling.

PHP framework programmers guide page 5

2 tfyh - framework classes

Framework classes alls start with Tfyh_ to be readily recognized. Three exceptions: The
init “class” file, since it must start any action as a scrip and the PDF and PDF_adapted
wrappers for the foreign TCPDF classes.

2.1 init.php

init is not a class, but rather a standard include to all php files read. in other words: all
PHP-files include at the very beginning init.php.

init does the session control, initialzes the Toolbox including the Config and Users
classes, triggers load throttling, creates the menu and the form sequence identifier or
picks it from the GET parameters passed in the request, pushes all $_GET paramnaters
into the $_SESSION["getps"] container for the appropriate form sequence and
initializes the data base access.

init.php also steers the end of the web page call by providing the end_script() function
which must be called at the end of all PHP-files to close the data base connection
appropriately. It logs the activities so that erroneous abortion of a PHP-file execution
can be traced back. It registers a shutdown function for graceful exit in such cases.

2.2 PDF, PDF_adapted

Both classes are simple wrappers for the public TCPDF framework which is used to
create PDF documents. PDF_adapted just extends formally TCPDF to be able to apply a
page footer which is set in the configuration.

PDF provides the function to create a PDF from an html template. The template shall
be put into the templates folder. It can contain fields which are resolved to their
respective values using the data record indexed. Additionally fields cn be computed in
the calling function for replacement within the template. An example for a template is:

<h4> {#Veranstaltungen.Bezeichnung#}, {#Ort#}, {#Zeit#},
{#gebuchteSitze#} Personen</h4>
{#Buchungsliste#}
<p>Storniert und deswegen für diese Veranstaltung nicht mehr
gültige Codes: {#Storni#}</p>

2.2.1 Functions

2.2.1.1 convert_to_pdf()

Create a pdf document from the provided html String. In order to set a footer text, set
the $this->footer_text variable first. Similar with the document author: to set one, set
the $this->document_author field.

PHP framework programmers guide page 6

2.2.1.2 create_pdf()

Create a pdf based on the table data.

2.3 Tfyh_app_session

A non-static class container to manage application based sessions. First of all the
framework uses the standard PHP session management with the session_start(),
session_id(), session_destroy() functions. A good choice for each single user. But in
order to prevent from too many users being busy at a time, you need to know how
many are active. Therefore all open sessions are logged in the ../log/sessions directory.
Each gets a file with filename = PHPSESSID and containing the user name, the session
start time and the last session refresh time.

2.3.1 session_open(), session_close()

The class has just these two functions. Init.php uses them and any program with
alternative login mechanisms e.g. at an API shall also use them. “session_open()”
expects the userID as a parameter.

2.4 Tfyh_audit

A non-static class container file for an audit routine which is at least once called by the
daily jobs routine. It may be triggered by other activities e.g. software update. The
tasks are:

• Check and correct web server directory access settings using the settings_tfyh
directives

• Check users and access rights.

• Check backup files count and size.

The result is logged and written to the audit log which can be useful for debugging and
supoport.

2.5 Tfyh_backup_handler

The backup_handler provides a means to create a backup of all tables of the connected
data base in the form of csv-tables, one file per table, zipped into one archive. It will
locate all backups into the provided $log_dir/backup directory which shall be existing.

2.5.1 backup()

Creates a backup. Ten backups in a row are indexed, different archive files, and then
start with the first index over again. At ech roll over, the existing first backup will be
renamed to become a secondary backup file. Secondary backup files are also indexed 0
.. 9 and rolling over back to 0 after 9. Then, the secondary file with index 0 is
overwritten.

The backup can be configured by the application configuration to be mailed to a

PHP framework programmers guide page 7

predefined mailbox. To trigger the sending, set an application parameter within the
Parameter table named "Backup_Mailbox" to an email address, e.g.
john.doe@trueme.org. The archive will be sent as base64 encoded text file. In order to
prevent such a mail attachement from unauthorized access it can be masked by xoring
the base64 encoded archive using a key. This key by default is a 64 bit base64
sequence. You may use a different one by setting an application parameter within the
Parameter table named "Backup_Mask".

2.5.2 unmask()

unmasks an existing backup in order to be able to read it. Provide the filename of the
masked backup, the mask and the binary zip will be returned, ready to be unzipped
then.

2.6 Tfyh_config

A utility class to hold all application configuration. There are three layers of config data.

1. Application constants which are part of the code and configure the framework
(code constants),

2. data base stored parameters which are typical for the app's function and (values
within a config table)

3. administrative parameters which are typical for the tenant using the application
(the setgtings_app and settings_db file)

The config class reads all and provides variable access to them for other classes. It is
automatically instantiated by the Toolbox class shall and only be accessed via the
toolbox.

The expected settings are currently:

• $app_name;
• $app_url;
• $changelog_name;
• $parameter_table_name;
• $pdf_footer_text;
• $pdf_document_author;
• $pdf_margins;

get_cfg()

Provides all configuration as associative array $key => $value.

2.6.1 set_cfg()

Copies the provided associative array $key => $value into the memory configuration.
This deletes all previously read settings. Shall only be used by the configuration change
form.

2.7 Tfyh_cron_jobs

A static class container file for a daily jobs routine: backup and log cleansing.

PHP framework programmers guide page 8

https://textfancy.com/

This class shall be extended by an application specific Cron_jobs class which then can
add application specific tasks such a record deletion for data privacy reasons.

2.7.1 run_daily_jobs()

performs the standard tasks. It may be triggered by whatever, checks whether it was
already run this day and if not, starts the sequence. So you may trigger this with any
specific user or api action like the login.

2.8 Tfyh_form

This class provides a form segment for a web file.

2.8.1 Form configuration by the definition file

The definition must be a CSV-file, all entries without line breaks, with the first line
being always "tags;required;name;value;label;type;class;size;maxlength" and the
following lines the respective values.

The form shall always displayed as a responsive grid. Use the "tags" definition section
to provide the needed <div> tags, which define the grid.

Here is an example:

tags;required;name;value;label;type;class;size;maxlength
<div class='w3-row'><div class='w3-col
l2'>;*;Bezeichnung;;Bezeichnung;text;;25;64
</div><div class='w3-col l2'>;*;OrtID;;Veranstaltungsort;"select
list:select:1";;20;
</div></div><div class='w3-row'><div class='w3-col
l3'>;*;AnzahlEinzel;;Anzahl Einzelplätze;"select
0=0;1=1;2=2;3=3;4=4;5=5;6=6;7=7;8=8;9=9;10=10;11=11;12=12";;5;5
</div><div class='w3-col l3'>;*;AnzahlPaar;;Anzahl Partnerplätze;"select
0=0;1=1;2=2;3=3;4=4;5=5;6=6;7=7;8=8;9=9;10=10;11=11;12=12";;5;5
</div></div><div class='w3-row'><div class='w3-col l1'><div
style='float:right'>;;submit;Platzkontingent jetzt
ändern;;submit;formbutton;;
</div></div></div>;;_no_input;;;;;;
;;_help_text;;Felder mit einem * müssen einen
Eintrag enthalten.;;;;
;;_help_text;;;;;;

The form definition file is located in the ../config/layouts folder and shall carry the
same name as the php file which uses this form without the extension. In multistep
forms, steps 2 through x forms must use the layout name [form]_[step], e.g. lyaout
#1 is 'registration', then #2 is 'registration_2'.

2.8.2 Form input elements

2.8.2.1 Standard input types

Following input types do not have any configuration at all except their size and
maxlength properties:

PHP framework programmers guide page 9

• Input type text

• Input type email

• Input type date

2.8.2.2 Input types with options

Following elements can be chosen for a form input and have a special handling then:

• Input type select: set type to "select value1=display1;value2=display2 ...". You
can define the selection options statically in the forms layout file or use the
following dynamic selection definition options:

• set the $select_options variable. Pass the select options to this
programmatically as array, e. g. ["y=yes", "n=no", "d=dunno"]. Then
the syntax is “select $options” for the form layout. If you need more than
one programmatical use a named array, e. g. ["field1" => ["y=yes",
"n=no", "d=dunno"],"field2" => ["1=one", "2=two", "3=more"]] and
use 'select $named_options' as form layout.

• set a parameter within the parameter table (deprecated).
Syntax is "select use:titles_choice"

• use a data base list (see Tfyh_list class). Either the list set like for mail
distribution list selction
Syntax is "select list:listset" or

• "select list:listset:listid[+]" [the ‘+’ adds ‘-1=(leer)’ as first entry]. In
both cases the user must have the necessary privileges to read the list, if
not a single error option is displayed.

• Input type radio: set type to "radio value1=display1;value2=display2 ...". Radio
buttons are displayed one above each other, separated by the
-tag. You can
use "radioh value=display1;..." to align them one next to each other. In that
case each option is cased into a <div class="w3-col l6"></div> DOM element.
You can define the selection options statically in the forms layout file or use the
following dynamic radio definition options:

• set the $radio_options variable. Pass the radio options to this
programmatically as array, e. g. ["y=yes", "n=no", "d=dunno"].

• Input type textarea: set size=count of rows, maxlength=width in characters. If
maxlength is not provided, the full available width will be used.

2.8.2.3 Mandatory input control

• Mandatory entry: set "required" to "*" to trigger the validity check to expect an
entry.

2.8.2.4 Special purpose and dynamic input names

• Name _help_text: if the name equals '_help_text' it will not be returned in
get_html(), but rather in get_help_html(). This name can be used more than
once.

• Name _no_input: if the name equals '_no_input' only the label is used. This
name can be used more than once. Used to add explanations in forms.

• Name #Name, @Name, $Name: if the name equals '#Name' or '@Name' all
available subscription (#), workflow (@) or concession ($) names are used and
the field is repeated for each. Use “#Titel: #Beschreibung”, “@Titel:
@Beschreibung” or “$Titel: $Beschreibung” as input label respectively.

PHP framework programmers guide page 10

2.8.2.5 Form input class and form input id

In order to be able to format a form input the class parameter may be set. It sets the
respective class information to the input html tag.

If the class entry starts with ‘#’, e.g. ‘#input-group-member-01’ it is set as id to the
input element html tag in order to be able to address the DOM element in Javascript,
e.g. for autocompletion preset.

2.8.3 Form usage

Form can have a single page or more. The latter provides the opportunity of branching
dialogues, e.g. the registration depending on the age of the person who registers. The
init pseudo-class provides a random number when a form is called which then can be
reused to follow he sequence of entering data step by step. This ensures that data are
linked to the same activity before being written to the data base, even if the user has
multiple tabs with the same form open in parallel.

The form will always use the action "?fseq=[randomNo][$form_index]", so that re-
enters the same php-page after form completion. The $form_index reflects the step
that was done when entering the values.

The Form class reads data provided in the http POST request and fills an array with
those. Reading includes replacement of "`" by the Armenian apostrophe and ";" by the
Greek question mark. Characters look similar, but have different code points so that
they will not be interpreted in their SQL-function such by any data base. To prevent
from cross side scripting, "<" is replaced by the math preceding character.

To display a Form, create a PHP File using the "$done" and "$todo" indices.

The "$done"-value provides the information of the executed workflow step before the
current http request, i. e. that one that delivers the POSTed values and rules the
application logic. The entered values shall be read and validated in the first PHP-code
part. Construct a Form using the done worklow step and run the "read_entered"
function to read the values. Compile all generic errors via the "check_validity" function.
Apply workflow specific application logic afterwards. Collect all further errors.

Now, in a second code part, the form and texts are displayed using the "get_html"
function. If there were errors, can repeat the step by reusing the same Form instance.
"get_html" will provide you with that form showing all entered values and red-flagged
erroneous fields. If the validation succeeded (or upon workflow start), construct a new,
empty Form for data entry. You should rule the page display code part by the "todo"-
parameter.

2.8.4 Form functions

2.8.4.1 preset_value(), preset_values()

Set a single value or a set of values within a form prior to its display. Usage is typically
for data record change forms. You create the form, preset the values of the existing
record and displays it for the change action.

Note: preset_values() also works for #Name / @Name / $Name fields and
subscriptions / workflows / concessions respectively.

PHP framework programmers guide page 11

2.8.4.2 get_html(), get_help_html()

Provide the html code to display the form in a page or the help text in a page.

2.8.4.3 read_entered()

Use read_entered() to read all POST parameters which match a Form field definition
into the respective input field. All form values are stored in the $_SESSION superglobal
array using a $_SESSION["forms"][$fs_id]-array.

2.8.4.4 check_validity()

This function checks all form inputs after they have been read against their syntax
validity, e. g. valid EMail format, mandatory fields filled in asf. If errors appear it
returns an error String, else it returns "".

2.8.4.5 set_validity()

This allows to run a validity check outside the form class and inform the form object of
an invalid entry to make sure it does not continue with the wirkflow but rather displays
the red border of the invalid field. Set the respective error message in the calling page.

2.8.4.6 get_entered()

Simple getter of all data read so far. Just returns a copy of the $_SESSION["forms"]
[$fs_id] array, kept for backwards compatibility of the code.

2.9 Tfyh_gallery

An image support class, details to be documented. #TODO

2.10 Tfyh_list

This class provides a list segment for a web file. The segment displays a part of a data
base table as it is within the data base. No manipulation, just filtering and sorting
applies. It provides a link to download the list as zipped csv-file.

The list definition must be a CSV-file, all entries without line breaks, with the first line
being always ‘id;permission;name;select;from;where;options’ and the following lines
the respective values. The name is the column name and can be preceded by a ‘#’
character to enforce sorting as unsigned integer (e. g. #EntryId). The values in select,
from, where and options are combined to create the needed SQL-statement to retrieve
the list elements from the data base.

Options are:

• sort=[-]column[.[-]column]: order by the respective column in ascending or
descending (-) order

• filter=column.value: filter the column for the given value, always using the LIKE
operator with '*' before and after the value

• firstofblock=column: only get the first row of a block of concecutive records with

PHP framework programmers guide page 12

the same column value. Only if you sort for that column first this will remove all
duplicates.

• link=[column name]:[URL] link the column to the given url e.g.
'link=ID:../forms/change_user.php?id='. The field value will be appended to the
URL in the link provided.

• For the column which reflects the user tables user ID always the “link=[field
name of user ID]:nutzer_profil.php?nr=” is used as default without being
explicitly specified.

Data type identifiers in list definitions

Each Select field may end with a data type identifier, telling the formatter what type of
data to expect: d = date, dt = datetime, f = float, p = percentage, u = unix timestamp
(seconds since epoch, will be displayed as datetime). The information is used to apply
German local formatting. The identifier appends the field name, separated by a
column, e.g. weight:i,birthDate:d.

Lookup fields in list definitions

Instead of column names list definitions may contain lookup fields. That is an Id which
references to another table and there to a column, using an inner join.

An example is “BoatId>Boats.Name@Id” in a list for a boat trip table “Trips”. That gives
the name of the boat instead of its Id Using an inner join of type "INNER JOIN `Boats`
ON `Boats`.`Id`=`Trips`.`BoatId`".

Variable list definition

The list definition may use variables, which is in particular useful for filter definitions.
They will be replaced by values within the definition during Tfyh_list construction.

So you may e.g. choose to define a list with “where” being “(NAME LIKE {name})” and
pass the argument array [“{name}” => “John%”] to the constructor. The
replacement value (e.g. “John%”) MUST NOT contain a ‘;’ for security reasons. If so,
the replacement will be “{invalid parameter with semicolon}” instead of the given
value.

Calculated additional columns (compounds)

List definitions may contain additional “compounds” columns, i. e. Strings which are
compiled from table entries. They are a String with placeholders $1, $2 asf. for the
entries as they are in the definition, so a definition could look like:

1;member;Persons with birthday; \
 ID,Person=$2 $3 (born: $5),firstname,lastname,gender,birthday;persons; \
 1;sort=lastname.firstname

Note: placeholders start with $1 for the first column in the definition and skip the
compound columns in the count.

The list is always displayed as a table grid. It will show the default sorting, if no sorting
option is provided.

Entry size limitation on list retrieval

For some purposes entries within a list may be shortened, e.g. when displaying them in
an html-table. Set $this entry_size_limit to the number of maximum characters to →
show. This will apply to get_csv and get_html, but not to get_rows.

PHP framework programmers guide page 13

Caching on repetitve list retrieval

In order to prevent from too frequent data base calls to tables which do not change too
frequently, lists may be cached. Use the cache_seconds options to provide a caching
interval, e.g. cache_seconds=3600 for one hour of caching. The cached lists are files in
the log/cache directory. Caches are always cleared by the tfyh_cronjobs for data
privacy reasons.

2.10.1 Construction

Upon construction of a list always the complete list definition file is read with all the
lists defined. You can choose the one to use by its name or ID, or choose ID=0 to get
the list of lists displayed rather than a content of a specific list.

The list constructor allows to provide arguments as array which will be used as
variables in the list definition. E. g. using s definition with the filter “name={name}”
and providing as argument [“name” => “John”] will return a list with only those
records with the name “John”.

2.10.1.1 parse_options()

Parsing the options is usually a function of the constructor, parsing the options of the
selected list. But when it comes to the list set display, these need also to be parsed to
be transported in the list call.

2.10.2 Simple getters

There is a set of simple list parameter getters implemented: is_valid(),
get_table_name(), get_list_name(), get_list_id(), get_set_permission(),
get_permission(), get_all_list_definitions().

2.10.3 Get the list

There are different options to get the list, depending on the use case.

2.11 Tfyh_logger

The logger class provides functions to log what happens during execution. Three log
types exist:

• Actions: They will be collected in three files, the “dones.txt”, “warns.txt” and
“fails.txt”. They are not aggregated for statistical purposes, but meant to be
used for tracing down errors. It can be provided as a list.

• Activities: A single activities.txt file with arbitrary type activities which will be
counted per day for statistical purposes. Statistics can be provided as a list.

• Mass transactions: While the format is like with Activities, the purpose is
transparency on who did what mass transaction, not statistical aggregation. It
can be provided as a list.

PHP framework programmers guide page 14

2.11.1 Methods for actions

2.11.1.1 log()

log actions, warnings and failures

2.11.1.2 list_and_cleanse_entries()

Return all logged actions which are younger than $maxAgeSeconds as list "\n"
separated. Remove those which are older than a certain age if requested.

2.11.2 Methods for activities

2.11.2.1 log_activity()

simple file append of the provided message plus time stamp.

2.11.2.2 collect_and_cleanse_activities()

Reads the activities log and creates an array with the count of activities per type,
except the current day. It deletes the collected activities from the activities log and
appends the count per type with the date of yesterday to the daily count log.

2.11.2.3 get_activities_html()

Return the activities per day for the last $count_of_days as html table.

2.11.3 Methods for mass transactions

2.11.3.1 log_mass_transaction()

log actions, warnings and failures

2.11.3.2 list_and_cleanse_mass_transactions()

Return all logged mass transactions which are younger than $maxAgeSeconds as list "\
n" separated. Remove those which are older than a certain age if requested.

2.12 Tfyh_mail_handler

The mail handler provides a functionality to send simple html formatted mails to
application users. It uses the tenant specific configuration as stired in the settings_app
file for parametrization. The parameters are

• $system_mail_sender: mail address for system generated mails, including plain
name, e.g. 'No-reply<noreply@domain.com>'

• $mail_schriftwart: mail address for copy recipient of workflow generated mails
• $mail_webmaster:mail address for getting information from users
• $mail_mailer: mail address for system generated mails on behalf of users
• $mail_subject_acronym: Acronym to prefix the subject line, e.g. "[YApp]"
• $mail_subscript:mail signature for system generated mails ("Yours sincerely A.

PHP framework programmers guide page 15

Bee")
• $mail_footer: mail footer for system generated mails ("see www.abc.org")
• $system_mail_address: mail return address for system generated mail

The mail handler cares for proper encoding and provides helpful functions to avoid
spam rejection such as multipart support to add a plain text to the html message. It
supports up to two attachements. Added is further the option to save mails as text
files.

2.12.1 send_mail()

This is th most frequently used function, providing the format and send capability. It
returns true on success, an error on failure. Sounds simple and is it.

2.12.2 store_mail(), get_html(), get_last_index()

Provide a capability to save mails as text file whith appropriate indexing and read them
back for display as HTNL. Thee different file paths can be used depending on whether
the mails were sent individually, to a distribution list, or from the system. In the
current implementations this is not used, but mails are stored in the data base.

2.13 Tfyh_menu

The menu class does two things: provide a menu to the user and check whether the
user is allowed to request a specific page. For the latter it uses methods of the Fehler:
Verweis nicht gefunden class.

2.13.1 Menu template file

Construct the menu from its template file. A template file is a flat file of menu items,
starting with a programmatic name, the role, workflows, subscriptions and concessions
which are allowed to use it, the display name and the link which is called when
selecting the menu item. Menu items will be displayed in the sequence of the file and
only, if the current user is allowed to use them. Level 2 item names must start with a
"_". A menu can have 1 or two levels, not more.

The role, subscription and workflow are a comma separated list. Any of these which is
preceded by a “.” will allow the access to the menu item link, but not display the item.

An application must have two menu definitions, ‘pmenu’ for the public or anonymous
access and ‘imenu’ for the internal or authorized access. Both sit in ../config/access.
init.php chooses which one to use based on the $_SESSION["User"] being set or not.

Here's a pmenu for reference:

id;permission;headline;link
Start;.Anonym;Startseite;../public/index.php
_Start_Datenschutz;.Anonym;Datenschutz;../public/datenschutz.php
_Start_Impressum;.Anonym;Impressum;../public/impressum.php
Buchen;Anonym;Buchen;../public/filter.php
_Buchen_Buchen;.Anonym;Buchen ;../forms/buchen.php
_Buchen_Ticket;.Anonym;Buchungsquittung ausgeben ;../pages/pdf_ticket.php
Storno;Anonym;Buchung stornieren;../forms/storno.php
Kontrolle;Anonym;Buchung nachsehen;../forms/kontrolle.php

PHP framework programmers guide page 16

Umbuchen;Anonym;Umbuchen;../public/umbuchen.php
Termine;.Anonym;Termine;../public/termine.php
Login;.Anonym;Einloggen ;../forms/login.php
Logout;.Anonym;Abmelden ;../pages/logout.php

And an imenu snippet, also for reference:

Verwalten;Vorstand,@24,$512;Verwalten ;
_Verwalten_Listen;Vorstand,@8,@16;Liste ausgeben ;../pages/show_lists.php
_Verwalten_SpindVergeben;@16;Spinde bearbeiten ;../pages/spind_vergeben.php
_Verwalten_Finden;Vorstand,@16,$512;Nutzer? ;../forms/nutzer_finden.php
_Verwalten_NutzerNeu;Verwalter;Nutzer neu ;../forms/nutzer_aendern.php

Note the following:

• You must allow level 1 seperately to show. An allowance only at level 2 will not
bring up the item in the menu, if the corresponding level 1 is not allowed.

• Workflow and concession bitmasks at menu level 1 and 2: @24 is the same as
@8,@16, but faster in execution.

2.13.2 Role hierarchy

The menu definition file refers to roles, workflows, subscriptions and concessions. Roles
have a hierarchy which is defined in the role_hierarchy file in the same location. An
example is:

Anonym=Anonym
Besuchen=Besuchen,Anonym
Begruessen=Begruessen,Besuchen,Anonym
*Anbieten=Anbieten,Begruessen,Besuchen,Anonym
*Verwalten=Verwalten,Anbieten,Begruessen,Besuchen,Anonym

So "Verwalten" can do everything which is specifically allowed for "Verwalten" plus all
what is alloed for any role in the list right to the '=' character. The asterisk points out
that this is a privileged role. That means: in the list of access rights users having this
role will be listed by name.

2.13.3 Subscriptions, Workflows and Concessions

Subscriptions, Workflows and Concessions are bit masks of 32 bits with each single bit
being a flag for whether this option is allowed or not for a specific user. That provides
96 flags per user to manage user settings. What a flag means is defined in the
"../config/access/workflows", "../config/access/subscriptions" and the
"../config/access/workflows" files, e.g.:

ID;Name;Titel;Beschreibung;Flag
1;Datenverwendung;Datenverwendung einschränken;Modifikation der
Widersprüche zur Veröffentlichung von Daten.;1
2;FahrzeugGenehmigen;Fahrzeug genehmigen;Befugnis eine Reservierung für ein
Fahrzeug des Vereins zu genehmigen.;2
3;TrainingDokumentieren;Training dokumentieren;Möglichkeit, freiwillig die
eigenen Trainingsleistung online zu dokumentieren.;4

The menu definition refers to subscriptions, workflows and concessions by #[bitmask],
@[bitmask] and $[bitmask] (cf. Menu template file). The standard usage is that a
subscriptions is meant to be self-managed by the user whereas by workflows and
concessions are set and removed by an adminstrative task.

PHP framework programmers guide page 17

2.13.4 Functions

2.13.4.1 get_menu()

Returns the html-code for the menu. Uses the $_SESSION["User"] variable to select
the allowed menu items.

2.13.4.2 is_allowed_menu_item()

Checks the path to a requested file and returns true, if this page is accessible for the
session user, else false. Checks all: role, workflows, subscriptions.

2.13.4.3 is_allowed_role_change()

Checks whether a user is allowed to login with this different role. This is the case, if
that role is included in the role list for the users role within the role hierarchy. That
function is usually only used tfor testing purposes and called when logging in with the
"as" parameter. See the login page description.

2.14 Tfyh_pivot_table

A little helper class for the Tfyh_list class to creat a pivot table based on a provided
list. There is just one function available: Pivot_table::get_html() to return an html
formatted pivot table of the passed list.

2.15 Tfyh_socket

The class to handle all data exchange with the data base. Build for a mySQL data base.
The tfyh_socket has no application logic except the change log. In the change log table
all data modifications are logged. The tfyh_cronjobs care for the log cleansing.

In tfyh native applications all tables have a primary key named ID and being a unique,
autoincremented integer value. Efacloud has a different key management, For that
purpose a key can also be given as a record with multiple fields and values which must
all match.

2.15.1 Generic functions

The three generic functions are

• open_socket(),

• close()

• query() and

• add_listener()

The query function takes an arbitrary SQL command and shall be avoided for safety
reasons. It is not logged. But all queries which are performed are listed in a log file
“queries.txt”.

You can add a listener to the socket which must implement the “Tfyh_socket_listener”

PHP framework programmers guide page 18

interface, i.e. the “on_socket_transaction” function, which is called on insert, update
and delete events, but not on generic queries.

2.15.2 Record history capture

The socket provides an in-build capability to capture a record history. Use it by
configuring the “../config/settings_tfyh” file, see the example in section “Fehler:
Verweis nicht gefunden“. Three settings are possible per data base table:

• history.tablename=columnname

• historyExclude.tablename=.columnname1.[columnname2.[columnname3…

• maxVersions.tablename=n

Note that columns which shall be excluded from the history logging must be framed by
dots. An update of a record which does not change any of the recorded columns’ value
will not be logged.

2.15.3 Standard modifications

The three standard modifications are insert, update and delete.

2.15.3.1 insert_into()

Insert a data record into the table with the given name. Does not check any key or
value, but lets the data base decide on what can be inserted and what not. Returns
either the “ID” of the inserted record on success or a String with warnings and error
messages.

2.15.3.2 update_record(), update_record_matched()

Update comes as a set of two different functions, but update_record is a convenience
short hand for the other. It gets the first record of which the key is matching and
updates all provided values, including the empty ones. It returns an error statement in
case of failure, else an empty String.

2.15.3.3 delete_record(), delete_record_matched()

Very similar to update except that the first matching data record is deleted.

2.15.4 Find records

To retrieve multiple records from the data base find_records comes as a set of
functions, all being somehow a shorthand for find_records_sorted_matched().

2.15.4.1 find_records_sorted_matched()

Find all records as indexed array of records, each as associative array of key => value
matching the provided key array and condition. Sort them in the requested order.
Returns false, if the value is not found or any other error occurred.

The condition combines $key and $value. Use it to the SQL type operand, e. g. "!=" for
not equal. Set to "" to get every record. You can use a condition for each matching
field, if so wished, by listing them comma separated, e.g. >,= for two fields if which

PHP framework programmers guide page 19

the first shall be greater, the second equal to the respective values. If more matching
values are provided than conditions (e. g. 3 values, but only two operators), the last
condition is taken for all extra matching fields.

The result can be sorted for multiple fields by providing a comma separated list of
fields. Precede the field name by a '#' to sort also text as numbers, e.g. "#EntryId".
The sort order is ascending or descending, but always the same for all sort fields.

2.15.4.2 find_records(), find_records_matched(), find_records_sorted()

These are all short hand convenience calls for finding multiple records.

2.15.5 Find a single record

To retrieve a single record from the data base find_record comes as a set of functions,
all being somehow a shorthand for find_records_sorted_matched() with a maximum
number of records being 1.

This set, the record returned is always the first found. No check is done whether there
are further records matching that condition. It is in the responsibility of the calling
function to ensure unambiguity of the answer.

2.15.5.1 find_record_matched(), find_record(), get_record_matched()

All short hand convenience calls to the find_record_matched. The get_record assumes
that the provided value matches the “ID” data field.

2.15.6 Get a record history for display

2.15.6.1 get_history_html()

Parses the history String of the record and returns the record history as html tables,
each version being a table with information on the update step.

2.15.7 Full table export and import

Use get_table_as_csv() or get_table_as_array() to retrieve a full table, all columns, all
rows.

Import a csv file into a table or delete table records (provide single column csv with
IDs only). The csv-file must use the ';' separator and '"' text delimiters. It must contain
a headline with column names that are literally identical to the mySQL internal column
names. All data records must be of the same length as the header line, not more, not
less. If a data record does not comply, it will not be imported.

The first column must be the records 'ID'. If this is not the case, no data will be
imported at all. For data records with an existing 'ID' all provided record fields will be
replaced, i. e. data will be deleted, if the respective field is empty. For data records
with an empty 'ID' the 'ID' will be auto generated by the mySQL data base. In this
case, and if the provided 'ID' is not yet existing, a new table record is inserted into the
table. All changes will be logged, as if they had been made manually.

A full table import needs a singel key field to work. The name of this ‘ID’ field can
optionally be provided, default is ‘ID’.

PHP framework programmers guide page 20

2.15.8 Get data base structure information

You can retrieve information the following on the table structure with a set of functions
wrapping the necessary SQL calls:

• get_db_name()

• get_column_names()

• get_column_types()

• get_indexes()

• get_table_names()

2.15.9 Modify the data base

You can also manipulate the data base structure.

• create_table(): that drops the table first, if existing

• add_columns()

• set_unique()

• set_autoincrement()

2.16 Tfyh_socket_listener

The interface to catch tfyh_socket insert, update and delete calls. Implement the
function

• on_socket_transaction (String $tx_type, String $tx_tablename, array
$tx_record)

To use it.

2.17 Tfyh_statistics

A utility class to gather usage statistics. To be documented #TODO.

2.18 Tfyh_token_handler

A utility class to create one-time tokens for user identification. It creates more or less
random tokens, stores them in a token file together with a time stamp and can cleanse
the lot. It is used for the api identification, but should no more be used nowadays.

2.19 Tfyh_toolbox

The last in the list is actually the most used. There is no file of the application which
does not instantiate the toolbox and with it its dependent classes Users and Config.

PHP framework programmers guide page 21

The toolbox reads all application configuration and user settings, and provides
functions for session support, data validity control, file handling and zipping, csv
parsing and generation, load throttling and some miscellaneous stuff.

2.19.1 functions for session support

2.19.1.1 start_session(), generate_token(), display_error()

Start a session or display an error, if failing. Generate a random character sequence for
arbitrary purposes.

2.19.1.2 create_login_token(), decode_login_token()

Create and decode a login token which can be used as login without password for a
limited period of time. Useful for e. g. Feedback gathering.

2.19.2 Data validity checks and formatting

2.19.2.1 check_and_format_date()

Dates may be ISO type YYYY-MM-DD (e. g. 2021-03-30) or DD.MM.YYYY (30.03.2021).
It is checked whether the String is a valid date and returned in the ISO way.

2.19.2.2 form_errors_to_html()

provide a nice red character color and a preceding “Fehler: “ to a String

2.19.2.3 strip_mail_prefix()

remove a mail prefix used for duplicated mails as accounts such as
“2.max.mustermann@tfyh.org” => “max.mustermann@tfyh.org”.

2.19.2.4 create_GUIDv4()

return a version 4 GUID (36 characters).

2.19.2.5 age_in_years()

return the current age in years based on the birthdate.

2.19.2.6 CheckIBAN()

check an IBAN validity.

2.19.2.7 check_password()

check a password against the minimum security rules. 8..32 characters, at least three
character types.

2.19.2.8 swap_lchars()

password obfuscation.

PHP framework programmers guide page 22

2.19.3 File handling

2.19.3.1 list_files_of_branch()

Parse a file system branch and return all relative path names of files.

2.19.3.2 unzip(), zip_files(), zip()

Archiving support. The last (zip()) zips a String into an archive.

2.19.3.3 return_file_to_user(), return_string_as_zip(), return_files_as_zip()

Return information to the user (as download). This is not providing a link, but rather
providing information based on the current user privileges which are not open to
public. The information is a file, a zipped single file or a zip-archive containing multiple
files. With the last function a zip file will be created in the file branch which the user
visits.
All these functions do not return, but exit the script. The files returned stay in the
directory where they were fetched from. If zip-archives are created, they get a 0600
file access mask not to be accessible by the public.

2.19.3.4 get_dir_contents()

Return the contents of a directory as html table.

2.19.4 CSV support

2.19.4.1 read_csv_line()

Read a single csv line assuming a separator character ‘;’ and a text delimiter ‘”’.

2.19.4.2 encode_entry_csv()

Encode a single value to a csv entry assuming a separator character ‘;’ and a text
delimiter ‘”’. Build a line by encoding the entries and appending them one by one
adding a ‘;’ in between them.

2.19.4.3 read_csv_array()

Read a simplified csv-file into an array of rows, each row becoming a named array with
the names being the first line entries. CSV-format must be with text delimiter = " and
separator = ;. There must not be any space character left or right of the delimiter. First
line entries must not contain line breaks. Lines ending with unquoted " \" will be joined
with the following line. The file is preferrably encoded in UTF-8, but ISO-8859-1 should
also work due to automatic encoding detection.

2.19.5 Load throttling

2.19.5.1 load_throttle()

Measure the frequency of web page inits, api sessions and errors. Meant to prevent
from machine attacks. A set 3000 of init timestamps resides in the /log/inits or

PHP framework programmers guide page 23

/log/api_txs folder. When this function is called, the current pointer is read, and the
timestamp to which it's pointing is also read. If such timestamp is existing, it is
checked, whether it is older than $event_monitor_period. If so, it is replaced by the
current timestamp, the pointer is stored back to the file system and true returned. If
not, an error page is displayed. Same procedure with errors: then the load throttle
records the error and blocks the site in case more than 100 errors have been received
in the monitor period.

2.19.6 Miscellaneous

Return a timestamp for a booking, based on separate date and time; get the encoded
parameters of a request as plain associative array; "Encrypt" a base64 String by xoring
it with a key. Decryption is the same as encryption.

2.20 Tfyh_user

This class provides all generic function on users. It shall be extended by a Users class
to provide application specific functions such as get_user_profile.

It also handles the rules of who is allowed what. So it resolves the role hierarchy and
the menu, subscriptions and workflow allowances. The access rules are provided in
three config files:

1. Role hierarchy.
Roles are defined, typically 4-6, where the hierarchy tells which role includes
what other roles. There must always be one anonymous role for users who are
not logged in. A preceding asterisk in the role definition indicates the role is a
privileged one. For privileged roles the names who have that access right are
disclosed, for the others only the count af assignments

2. Workflows (optional).
There is one integer bitmask of workflows. So up to 32 different workflows can
be defined freely. To refer to a workflow use the @-character plus the bit mask
value, e.g. @64.

3. Subscriptions (optional).
There is one integer bitmask of subscriptions. So up to 32 different
subscriptions can be defined freely. To refer to a subscription use the #-
character plus the bit mask value, e.g. #128.

It provides functions monitor allowances and resolve attributes, see below.

It provides an option to get user related attributes of three separate lists in which a
user can be assigned as many list attributes as is wanted. An example is the list of
functions. Any function may be assigned to any user, a record is one of these
assignments.

2.20.1 Access control

2.20.1.1 is_hidden_item(), is_allowed_item()

check whether a menu item is hidden (simple check for the preceding “.”) or whether it
is allowed for the current user (by all: role, workflow, subscription).

PHP framework programmers guide page 24

2.20.1.2 get_all_accesses()

return a HTML encoded list of role, workflow and subscription users. For provoleged
roles all names, for the remainder the count of users with this access right.

2.20.1.3 get_user_services()

a HTML list of the services (I. e. workflows or subscriptions) a user is granted or
subscribed to.

2.20.2 Other functions

2.20.2.1 get_user_attributes()

return all attributes of a given type, currently: Funktionen, Ehrungen, Spinde. This is
very specific for brg-intern, so if needed at different places it will need some further
abstraction.

2.20.2.2 check_new_user_name_for_duplicates()

Check whether a user name (first and last name) is or was already used in the user
archive and the user table.

2.20.2.3 get_action_links()

get the html-links which are available for a current user out of the set of action links
configured based on the access rights of the current user.

2.21 Tfyh_xml, Tfyh_xml_tag

A little simple XML parser class, details to be documented. #TODO.

PHP framework programmers guide page 25

3 Tfyh configuration and resources

Before we continue with the forms it shall be advised how to configure an application
using this framework. Here are three layers of configuration:

3.1 The framework settings (config/settings_tfyh)

The framework settings are defined in the /config/settings_tfyh file.

Their purpose is to configure the application. These settings are part of the code like
form layouts and shall not be editable by the user. They are read on startup af a PHP
request and accessible as public variable $toolbox config tfyh-settings. They are → →
stored as a two level array, e.g. $this settings_tfyh["config"]["app_name"].→
Framework setting must never be changed by the application.

3.1.1 Api settings (deprecated)

hideout_key, token_key. Used for obfuscation on the brg-intern API for efa. No
explanation here, don’t use it any more. Will be purged from brg-intern in the hopefully
near future.

3.1.2 Config settings (names, tables, pdf parameters)

Partially defaulted settings. Non-default settings are mandatory.

app_name: String. The name of the application. Will show up in dialogs asf. No default
value.

app_url: String. The URL of the application provisioning site. Do not mix up with the
URL, where it is actually hosted. Default is “”.

backup: String “on” or “off”. If set to “on”, backup will be part of the daily cron jobs.
For data bases with more than a couple of thousands records overall, it is discouraged
to use it as part of the cron jobs, because it can be annoyous for the user and create
timeout errors. Default is “off”.

changelog_name: String. The name of the table to write the data changes to. No
default value.

forbidden_dirs: String. Comma separated list of directories which shall be forbidden for
web user access. This is checked and corrected by the cron jobs to avoid manual error.

parameter_table_name: String. A name of a table carrying volatile application
parameters. Discouraged. Default is “”.

pdf_document_author: String. The author who will be set in all PDF documents created
by the application. Default is “”.

pdf_footer_text: String. The footer text to be set in all PDF documents created by the

PHP framework programmers guide page 26

application. Set to “” to have no footer. Default is “”.

pdf_margins: array of Integer. Margins for the PDF page, [left,top,right,header,footer].
Default is [15,15,15,10,10].

public_dirs: String. comma separated list of directories which shall readable for web
user access. This is checked and corrected by the cron jobs to avoid manual error. No
default value.

3.1.3 History/maxversions settings

Optional section, no defaults.

history.<table>: String. Column name of column whichshall be filled with the version
history. The history column shall be at least a 65.536 characters text field.

maxversions.<table>: Integer. The maximum number of versions to be stored

historyExclude.<table>: String. Column names, framed by dots, of those columns
which shall be excluded from the history. Note: the history column itself is obviously
always exclude.

An example is prbably needed:

history.qUsers;"Historie"
historyExclude.qUsers;".LastLogin.currentProject.Settings."
maxversions.qUsers;25

This sets the history column of the table “qUsers” to be “Historie”, to hold maximum 25
versions and to exclude from version control the LastLogin, currentProject and Settings
columns (because they change frequently and are not relevant for analysis..

3.1.4 Init settings

Optional, because all settings have a default, if not provided.

max_concurrent_sessions: Integer. Limit of concurrent application sessions. Each user
has an own session. This also applies for the API, so if a user uses both the web and
the API, this accounts for two session. Default ist 25.

max_errors_per_hour: Integer. Maximum number of errors which may occur during
one hour. One error is counted per call of error.php and per failed login attempt.

max_inits_per_hour: Integer. Maximum number of calls to the init.php file which may
occur during one hour. Default is 3000.

max_session_duration: Integer. Inactivity timeout in seconds for web user sessions.
Default is 600.

max_session_keepalive: Integer. Forced expiration time in seconds for any application
session even if kept alive, e.g. by regular API polls. Default is 42300 (12 hours).

3.1.5 Logger settings

logs: array of String. Log files written by the application. Used for log rotating. Default
is the set of log files created by the framework: ["app_info.log", "app_warnings.log",
"app_errors.log", "app_init_login_error.log", "app_bulk_txs.log", "sys_cronjobs.log",
"debug_init.log", "sys_shutdowns.log", "app_audit.log", "sys_timestamps.log",

PHP framework programmers guide page 27

"debug_app.log", "debug_sql.log"]. The settings array will be merged into it without
duplicates.

maxsize: Integer. Maximum size in bytes of a log file. If the log file exceeds the size it
is copied to <logfilename>.previous. <logfilename>.previous will then be overwritten,
if existing. This limits the needed space per log-file to twice the maxsize value of bytes.

obsolete: array of String. Obsolete filenames for the logger. Some files my still sit in
the log directory from previous application version which will never be deleted. Put
them into the obsolete list for this deletion to occur.

3.1.6 Upgrade settings

These settings are only used by pages/upgrade.php.

remove_files: array of String. Files which shall be removed from the application folders
after upgrade.

src_path: String. Web path from where to gether the newest program version zip
archive.

version_path: String. Web path from where to get the version file for that version.

3.1.7 User Settings

User settings are mandatory, if not declared optional, and have no default.

3.1.7.1 User table and user id fields

user_table_name: String. The name of the users table.

user_account_field_name: String, optional, no default. The name of the field carrying
the user account, usable for login.

user_id_field_name: String. The name of the field for the users userID (integer) in the
user table, usable for login with a permanent password.

user_mail_field_name: String. The name of the field for the users e-mail address in the
user table, usable for login.

3.1.7.2 User administration actions offered in the user profile to view or change a
user.

action_links: array of String, optional, no default. Each holding a role followed be “:”
and a link. These are the actions offered to a application user for all users in the user
search result.

3.1.7.3 Roles or workflows which are grnted specific permissions

anonymous_role: String. The name of the role which is not granted any rights at all.

self_registered_role: String. The name of the role which is allowed to self-register.
Typically used to allow users to review what they have entered as user data, but no
more. Mandatory, no default.

useradmin_role: String. The name of the role which is allowed to administer users
other then himself and the user role. Mandatory, no default.

PHP framework programmers guide page 28

useradmin_workflows: String, JSON. Provide an array of workflow flags and the fields
which are allowed to be changed within the users.user_table_name by this workflow.
The parameter needs to be json encoded, e.g. {"1":
["Datenschutzmaske","Datenschutztext"]}. Set to {} to allow none. Mandatory, no
default.

3.1.7.4 Used types of permission control

use_concessions: boolean (true/false). The application uses the concessions as user
priviledge setting. Default: false.

use_subscriptions: boolean (true/false). The application uses the subscriptions as user
service setting. Default: false.

use_workflows: boolean (true/false). The application uses the workflows as user
priviledge setting. Default: false.

3.1.7.5 User name

user_firstname_field_name: String, optional, no default. The name of the field for the
users first name in the user table.

user_lastname_field_name: String, optional, no default. The name of the field for the
users last name in the user table.

3.1.7.6 Miscellaneous

user_archive_table_name: String. The name of the table for archived records.

ownerid_fields: String, optional, no default. List of fields which represent the userID
(integer) of the owner of this record in a table. Syntax is
<tablename>.<columnname>.

3.2 Version and copyright (public/version, public/copyright)

The version and copyright information is stored in two files in the public folder. They
will show up in the menu bar at the bottom. The copyright text will just be copied, so a
good example would be “©tfyh.org”.

The version shall be of the format <release>.<major>.<minor>_<drop>, e.g.
‘v2.3.1_09’. It will also just show up as written in the menu barapp_info , but it will be
parsed into the app_info field of Tfyh_config, and thus be accessable by any upgrade
checker. Parts may be left out, e.g. 2.3_12 is a valid version, as is 2.3.1.

3.3 The tenant settings

They are defined in the /config/settings_app and /config/settings_db files.

Their purpose is to configure an app according to a tenants’ properties such as footer
texts, email addresses and so forth. The settings_db is separate and does only contain
the access settings for the data base. It must not be edited except during application
installation, whereas the other tenant settings shall be configurable via the application
configuration menu.

PHP framework programmers guide page 29

Part of the tenant settings are also the colors, which are stored in the resources area,
as app_colors.txt file. When changing the colors, the application uses this file and the
app_no_colors style sheet to generate the tenant specific style sheet for the colouring.

Tenant settings shall only be changed by the respective forms, never else.

3.4 Application run time configuration

There is a configuration table in the data base which was meant for permanent storage
of application parameters which may change due to program execution such as the
highest membership index or similar. It is for historical reasons also partly used for
tenant specific and even application specific configuration, but should not be used for it
in the future. The table name can be set in the config section of the tfyh settings
(parameter_table_name).

Application run time configuration can change at any time. If a paraneter is used, it
must be read on the fly.

3.5 Other configuration

All configuration sits within the /config/ folder. There are the following directories:

• access: contains the public and internal menu definition and the role_hierarchy
file, the workflow and subscriptions bitmask definition and, if applicable a menu
(i.e. access control) definition for any server API.

• layouts: contains all form layouts

• lists: contain all list set definitions

• snippets: contain the definition of the html snippets displayed at the start of a
page, between menu and body and as footer. Configure the snippets to change
the page title, the logo displayed and the footer text, if requested.

This directory also contains the settings_app, settings_db, and settings_tfyh files.

3.6 Styles and resources

Two style sheets define all styles: a generic w3_style.css, in major parts copied
simplified and adapted from w3schools.com, and the app-style.css which contains
those parts of the style sheet which use colors and font definitions. The difference is
made to distinguish the generic from the tenannt specific definition.

The style sheet provides all styles needed for the standard left hand menu and
responsive form design. Note that the configuration snippets, the start and end
snippets of the menu class and all form layouts use these styles. So changing the style
sheets to change the layout concept will incur also a code change in these parts. It is
not recommended.

They sit in the /resources/ folder. Please put here al other style elements. Like logo and
images for the dateiablage.php file manager.

PHP framework programmers guide page 30

3.7 Multilanguage support

The framework provides some support for multiple languages. Strings may be pulled
from a language resource file by using the i() function. The resource identifier for this
purpose is a 6-digit token followed by a pipe character and up to 24 characters of the
intended String.

3.7.1 Internationalization resources

Internationalization resources are:

• the file “catalogue.csv” in the /tfyh_common/i18n directory: it holds the complet
set of all known translations of the applications using the tfyh framework and
parsed so far in your development environment. The tfyh_framework files have
such a set of i18n resource references including their appropriate translations
already as part of the package.

• the *.lrf files in the /i18n directory: They provide the texts per language for all
used i18n resource identifiers within the application. When calling
/classes/init.php also /classes/init_i18n.php is called and loads the configured
language resource file.

• The internationalization parser i18nParser.jar in the /tfyh_common/i18n
directory. It must be run prior to any code release.

3.7.2 The i18n language selection

Within the configuration, the “language_code” parameter defines the language used.
Its value is arbitrary, but it is recommended to use two digit coding like “en”, “it”, “de”,
or similar. The value must correspond to a language column header within the
catalogue.csv file. The standard for tfyh includes en, de, fr, it, nl languages for the tfyh
framework files.

The default language_code setting is “de”. Nevertheless it is recommended to use as
default texts the English language and en as first language column, like the framework
does.

3.7.3 The internationalization global function i()

This function takes a list of Strings. The first is the i18n resource identifier, all following
text to replace. In the String all %1 occurrences are replaced by the second String in
the argument list, all %2 by the third asf. Up to %9. No more than 10 arguments are
used, any exceeding is ignored.

The function i() returns the String in the configured language with all replacements as
found. For Javascript code the name of the i18n-function is _(). Note the difference in
the name of the i18n function for PHP and JavaScript. This is due to the fact, that in
PHP _() is used as shorthand for gettext() while in Javascript i() may be inadvertently
overridden by a variable declaration in a loop.

3.7.4 Creating a language resource file

Internationalization resources are automatically created using i18nParser.jar. It parses
files and replaces plain Strings by i18n resource identifiers, filling the catalogue.csv in
parallel with the texts. If within an i() call the first argument is already an i18n

PHP framework programmers guide page 31

resource identifier, it checks its existence in the catalogue.csv. If found, nothing
happens. If missing, the i18n resource identifier will be added to the catalogue without
text.

The following directories are parsed:

• classes, forms, pages, public: *.php.

◦ For the PHP-code part all calls to the global i() function are detected and the
first argument in the argument list is replaced by a i18n language resource
reference. The text found in the first argument of the i() call ends up in the
first language column of “catalogue.csv”.

◦ All html parts are replaced by an i() call to a resource reflecting the html
snippet. After parsing the php code has no more html snippets. It is
recommended to clean up the code prior to the first parsing and after it.

• /config/lists and /config/layouts: *.* the columns corresponding to a text value
displayed to the user are parsed and any text replaced by a i18n resource
identifier.

• /js_*: *.js except jQuery*.js. All calls to the global _() function are detected
and the first argument in the argument list is replaced by an i18n language
resource reference. The text found in the first argument of the _() call ends up
in the first language column of “catalogue.csv”.

3.7.5 How to use it

Edit all code to insert the i() call in locations where suitable. Make use of the
replacement option to avoid too small a snippet. Run the i18nParser.jar and use the
first language column texts for translation.

Use spreadsheet calculation and csv to edit all translations. The csv-file must be UTF-8
encoded and using ‘;’ and ‘”’ for separation and quotation. Automated translation
should be possible.

PLEASE NOTE: when parsing your code files will be changed. In particular all html-code
will be moved into the catalogue.csv file. This reduces readability. You may not be
happy with the result. So please backup everything before starting to use the i18n
framwork. Although the tfyh-files always use it, your application may still ignore it
without any drawback.

3.7.6 Text which shall not be translated

When parsing the configuration files and as well within the html snippets there may be
text which has a technical significance and shall never be translated. Such text should
end up in the column any language of the catalogue.csv, leaving all translation columns
empty.

In particular html snippets are automatically disassembled into text an html-tag parts,
so that the text parts can be fed into an automated translator without danger to the
links or similar information within the html-code. When creating the *.lrf files, these
snippets are reassembled. This will, however, required decent checking of the
disassembled text part translations whether the code tokens ‘ ** ‘ still fit.

PHP framework programmers guide page 32

3.7.7 Duplicate text

The multilanguage solution has no deduplication. If a text like “number” occurs
multiple times in the code, it will get as many i18n resource references as
occurrences. This may look inefficient at the first glance, but actually it is not sure that
the same text always translates the same way. And it will allow to find out, if an i18n
resource becomes unused by a code change.

PHP framework programmers guide page 33

4 Tfyh user and session management, forms

A key function for all applications to benefit from this framework must be data
entering. So forms play a major role. The framework shall help to concentrate on the
business logic which must be written in plain PHP, supported by some framework
helpers.

It starts with the user identification and authorisation (see the Menu class) and
continues with a multistep form support.

4.1 Tfyh user and session variables

For the tfyh session management mainly PHP standard procedures are used, details
see the Tfyh_app_session class section.

4.1.1 The $_SESSION variable

Tfyh uses two $_SESSION array sections to manage user and input data within a
session:

• $_SESSION[“User”]: the record of the current user. May or may not be known in
the data base.

• $_SESSION[“forms”]: per form sequence this contains a subarray
$_SESSION[“forms”][$fseq] holding all parameters ever posted by this
sequence of multistep form input.

• $_SESSION[“getps”]: per form sequence this contains a subarray
$_SESSION[“getps”][$fseq] holding all parameters ever conveyed via the GET-
parameters in the URL by this sequence of multistep activity.

The arrays are gathered within the init and Form classes, so that you will not really
have to care about the details. Your form layout will rule the fields to be entered.

The $_SESSION[“User”] has four fields relevant for its access priviledges:

• $_SESSION[“User”][<userID>]: this is the numeric ID which identifies the user.
Its field name is part of the tfyh settings, see “user_id_field_name” there. It will
rule on whethter any data belong to the user or not. If the user is not known or
not identified (i. e. not logged in), this field will be -1. So any value >= 0
ensures that the user was verified.

• $_SESSION[“User”][“Rolle”]: this is the String declaring the users role. See the
Tfyh_menu class and the role_hierarchy ther for more details.

• $_SESSION[“User”][“Concessions”], $_SESSION[“User”][“Workflows”]: these
are two 32bit Integer numbers which act as a mask to provide more specifically
access to some functions.

PHP framework programmers guide page 34

4.1.2 Securing user priviledge authenticity

All application access is managed by the Tfyh_menu class. But it has to be noticed,
that a user once logged in, he or she can use the session to create a post request. Init
may catch that but one never knows what creativity a user may apply to circumvent
this mechanism (not that I knew of one, though).

However, there is no way around the Tfyh_socket to access the data base. In order to
safeguard at least the user priviledges, the Tfyh_socket class will check for every data
manipulation in the users table. It will refuse:

• Inserts or updates of a record for user different from the session user,
except the session user has the ‘useradmin_role’, or a respective workflow
allowance, see User Settings.

• Changes of the access priviledges of any user except the session user has
the ‘useradmin_role’. Access priviledges are granted with the fields: “Rolle”,
“Workflows”, “Concessions”, ID, and account name.

• Exceptions:

◦ Insertion of the very first record in the users table. Obviously this must be a
user admin.

◦ Insertion of a new user with a self-registration role and workflows and
concession set to 0. This is needed for user self registration.

4.2 Tfyh – framework forms

For some basic activities which are needed in all applications, a set of forms is provided
covering login & password reset, tenant configuration, table import, mail sending and
reading, as well as file upload.

All forms follow the same logic and structure:

1. They are build using one or more layout files, as many as the form has steps to
provide

2. The form action always calls to the very same form, indicating the step that was
done

3. A specific $_Session field gathers everything which was ever posted into this
form sequence

4. A business logic which decides on the provided input what to do next

5. A form display part

4.2.1 A typical form file

Here is how a typical form file would look like:

1. Start with an init.php call to do the authorisation

2. Continue with the interpretation of GET Parameters. Typically you use get
parameters to select the record to be modified on modification forms or similar.
Since it is gathered in a form sequence specific array this will also keep the

PHP framework programmers guide page 35

context if the user has multiple browser tabs opened in parallel.

3. If this is a subsequent call by the form being filled and sent, rebuild the form in
memory and interpret all post parameters using a call to the appropriate Form
class.

4. Do all the business logic, e. g. store data, decide on the next step, send mails
etc.

5. Display the page based on what was decided to be the next step of the form in
3. (If it is the first call in a sequence then step 3 was skipped. No options to
select.) The Form calls builds the form based on the layout. You may use stored
data base values to preset the forms inputs. If this is the last step it may not
display any form but just a completion message.

Go to the login.php to have a look. And see in the Form calls for the layout definition.

4.2.2 configparameter_aendern.php

Use this form to change the tenant config. The form layout defines what parameters
will be used for change. The result will be stored in the config/settings_app file as
base64 encoded ext.

4.2.3 dateiablage.php

Use this form to upload files into the upload directory and manage all files there. It
provides all functionality to upload, create directories, download and delete file within
the uploads section. A sort of min file manager.

4.2.4 farben_aendern.php

Use this form to adapt the theme colours. Note that this will always overwrite the
current app-style.css using the provided colours and the app-style-no_colors.css as
template. The color set itself is stored in the app-colors.txt file which also will be
overwritten. A change can not be undone.

4.2.5 login.php and reset_password.php

The user login form and the password reset form. User login uses either an E-Mail
address of the user or its userID. The name of the table carrying the information of
users is configured in the users’ section of the settings_tfyh.

If the password is left empty, the provided E-Mail address corresponds to a registered
user and this user has no password set, a 6 digit token is sent to this mail address to
provide access.

If the user has set a password and has forgotten it, the reset_password.php provides a
form which will delete the password sending a deletion token. Then the user can login
again with another token and set a new password.

By that means these forms provide a complete although very basic access control
management.

PHP framework programmers guide page 36

4.2.6 mail_versenden.php and mail_nachlesen.php

These two forms allow for users to send mails to predefined distribution lists.

The distribution lists are set via a set of tfyh_list lists, so you can use subscriptions or
similar criteria to select users.

You may parametrize a list in “mail_versenden.php” by calling it as
“mail_versenden.php?listparameter=whatever” and using the String “{listparameter}”
as parameter in the list definition, see Tfyh_list section for details on list
parametrization.

All mails sent are stored in the data base in a Mails table, if it exists. They can be read
by those who can send using the mail_nachlesen.php – differentiated by the
distribution list.

4.2.6.1 Mail formatting

Mail texts can include fields which are defined as “{#key#}” wherein key stands for a
user record data value which is stored in the data field ‘key’.

Three special keys exist: 1. “{#Anrede#}” for the German “Lieber Vorname
Nachname” or “Liebe Vorname Nachname” based on the ‘Geschlecht’ value of the user
record, 2. “{#Profil#}” for a user profile table and 3.
{#LoginToken+<plusDays>+<deepLink>#} wherein <plusDays> stands for the
validity of the token in days and <deepLink> for the link the token directs you to. An
example could be {#LoginToken+2+../forms/profil_aendern.php#}. The URL of the
login token is defined by the $app_url configuration paramater (see Tfyh_config) plus
“/forms/login.php.

All mails are sent as HTML and plain text in a multipart encoding to avoid spam
filtering.

4.2.7 tabelle_importieren.php

Use this form to import a csv formatted table into the data base. Use the form layout
to define which tables may be imported.

The csv table must be ‘;’ separated with ‘”’ text delimiters. The first line is the header
line, column names must match exactly the data base column names (case sensitive).
Not all columns must be provided. There is one primary key per table. This key column
must be included in the columns list.

Records are inserted, if the value for the primary key is empty. Records are updated, if
the primary key is provided together with at least one other column. Records are
deleted, if the primary key is provided and no other field.

The import will first dry run and show what will be done, then the user has to confirm
the action.

4.3 Tfyh – framework pages

Few generic pages are part of the framework to complete the functionality of access
control and logging.

PHP framework programmers guide page 37

4.3.1 alle_berechtigungen.php

Use this page to display a compilation on all access rights assigned within the
applications. Privileged role owners are displayed one by one, providing the names. For
all other roles, workflows and subscriptions the number of users with the access right
assigned is given.

4.3.2 show_actions.php, show_changes.php, show_logs.php

Display application usage and monitoring information.

• Actions: init, login, and error statistics together with the info, warnings or errors
of the application.

• Changes: all data changes of the last days, max 200.

• Logs: All gathered logs in a structure based on the log file name which shall be
‘<category>_<type>.log’, like in “app_info.log”. Predefined categories are api,
app, sys, debug; predefined types are info, warnings, errors, bulk_txs, cronjob.

4.3.3 show_lists.php

Display a selected list. The user can sort and filter the list and download its contents as
csv formatted table (zipped).

4.3.4 logout.php, construction.php, error.php

Standard pages after the user logged out, hit a menuy link which is still to be built or
caused any transactional or session error (most common: session expired).

To display an error use the $toolbox display_error function which redirects then to the →
error.php page.

4.3.5 maintenance.php, upgrade.php

maintenance.php is a mini page which can be displayed upon maintenance. Just edit
the init.php to provide an information on the time the site is planned to be up and
running again to show this page instead of any other web page of the application. It is
the only common page located in the /public/ folder.

upgrade.php provides a facility for web based application upgrade which will download
the current version and replace all files in the application folder, except the app
configuration files settings_db, settings_app, app_colors.txt.

PHP framework programmers guide page 38

5 Acknowledgements

The framework was created using the eclipse based Zend IDE.

This document was created using oracles openOffice word processor.

Many of the design hints I borrowed from w3schools.com.

I would never have come that far in PHP knowledge without the Google search engine,
stackoverflows explanations and the php.net tutorials.

PHP framework programmers guide page 39

	1 Foreword
	1.1 Licence consideration
	1.2 System prerequisites
	1.3 A word on the contents

	2 tfyh - framework classes
	2.1 init.php
	2.2 PDF, PDF_adapted
	2.2.1 Functions
	2.2.1.1 convert_to_pdf()
	2.2.1.2 create_pdf()

	2.3 Tfyh_app_session
	2.3.1 session_open(), session_close()

	2.4 Tfyh_audit
	2.5 Tfyh_backup_handler
	2.5.1 backup()
	2.5.2 unmask()

	2.6 Tfyh_config
	get_cfg()
	2.6.1 set_cfg()

	2.7 Tfyh_cron_jobs
	2.7.1 run_daily_jobs()

	2.8 Tfyh_form
	2.8.1 Form configuration by the definition file
	2.8.2 Form input elements
	2.8.2.1 Standard input types
	2.8.2.2 Input types with options
	2.8.2.3 Mandatory input control
	2.8.2.4 Special purpose and dynamic input names
	2.8.2.5 Form input class and form input id

	2.8.3 Form usage
	2.8.4 Form functions
	2.8.4.1 preset_value(), preset_values()
	2.8.4.2 get_html(), get_help_html()
	2.8.4.3 read_entered()
	2.8.4.4 check_validity()
	2.8.4.5 set_validity()
	2.8.4.6 get_entered()

	2.9 Tfyh_gallery
	2.10 Tfyh_list
	2.10.1 Construction
	2.10.1.1 parse_options()

	2.10.2 Simple getters
	2.10.3 Get the list

	2.11 Tfyh_logger
	2.11.1 Methods for actions
	2.11.1.1 log()
	2.11.1.2 list_and_cleanse_entries()

	2.11.2 Methods for activities
	2.11.2.1 log_activity()
	2.11.2.2 collect_and_cleanse_activities()
	2.11.2.3 get_activities_html()

	2.11.3 Methods for mass transactions
	2.11.3.1 log_mass_transaction()
	2.11.3.2 list_and_cleanse_mass_transactions()

	2.12 Tfyh_mail_handler
	2.12.1 send_mail()
	2.12.2 store_mail(), get_html(), get_last_index()

	2.13 Tfyh_menu
	2.13.1 Menu template file
	2.13.2 Role hierarchy
	2.13.3 Subscriptions, Workflows and Concessions
	2.13.4 Functions
	2.13.4.1 get_menu()
	2.13.4.2 is_allowed_menu_item()
	2.13.4.3 is_allowed_role_change()

	2.14 Tfyh_pivot_table
	2.15 Tfyh_socket
	2.15.1 Generic functions
	2.15.2 Record history capture
	2.15.3 Standard modifications
	2.15.3.1 insert_into()
	2.15.3.2 update_record(), update_record_matched()
	2.15.3.3 delete_record(), delete_record_matched()

	2.15.4 Find records
	2.15.4.1 find_records_sorted_matched()
	2.15.4.2 find_records(), find_records_matched(), find_records_sorted()

	2.15.5 Find a single record
	2.15.5.1 find_record_matched(), find_record(), get_record_matched()

	2.15.6 Get a record history for display
	2.15.6.1 get_history_html()

	2.15.7 Full table export and import
	2.15.8 Get data base structure information
	2.15.9 Modify the data base

	2.16 Tfyh_socket_listener
	2.17 Tfyh_statistics
	2.18 Tfyh_token_handler
	2.19 Tfyh_toolbox
	2.19.1 functions for session support
	2.19.1.1 start_session(), generate_token(), display_error()
	2.19.1.2 create_login_token(), decode_login_token()

	2.19.2 Data validity checks and formatting
	2.19.2.1 check_and_format_date()
	2.19.2.2 form_errors_to_html()
	2.19.2.3 strip_mail_prefix()
	2.19.2.4 create_GUIDv4()
	2.19.2.5 age_in_years()
	2.19.2.6 CheckIBAN()
	2.19.2.7 check_password()
	2.19.2.8 swap_lchars()

	2.19.3 File handling
	2.19.3.1 list_files_of_branch()
	2.19.3.2 unzip(), zip_files(), zip()
	2.19.3.3 return_file_to_user(), return_string_as_zip(), return_files_as_zip()
	2.19.3.4 get_dir_contents()

	2.19.4 CSV support
	2.19.4.1 read_csv_line()
	2.19.4.2 encode_entry_csv()
	2.19.4.3 read_csv_array()

	2.19.5 Load throttling
	2.19.5.1 load_throttle()

	2.19.6 Miscellaneous

	2.20 Tfyh_user
	2.20.1 Access control
	2.20.1.1 is_hidden_item(), is_allowed_item()
	2.20.1.2 get_all_accesses()
	2.20.1.3 get_user_services()

	2.20.2 Other functions
	2.20.2.1 get_user_attributes()
	2.20.2.2 check_new_user_name_for_duplicates()
	2.20.2.3 get_action_links()

	2.21 Tfyh_xml, Tfyh_xml_tag

	3 Tfyh configuration and resources
	3.1 The framework settings (config/settings_tfyh)
	3.1.1 Api settings (deprecated)
	3.1.2 Config settings (names, tables, pdf parameters)
	3.1.3 History/maxversions settings
	3.1.4 Init settings
	3.1.5 Logger settings
	3.1.6 Upgrade settings
	3.1.7 User Settings
	3.1.7.1 User table and user id fields
	3.1.7.2 User administration actions offered in the user profile to view or change a user.
	3.1.7.3 Roles or workflows which are grnted specific permissions
	3.1.7.4 Used types of permission control
	3.1.7.5 User name
	3.1.7.6 Miscellaneous

	3.2 Version and copyright (public/version, public/copyright)
	3.3 The tenant settings
	3.4 Application run time configuration
	3.5 Other configuration
	3.6 Styles and resources
	3.7 Multilanguage support
	3.7.1 Internationalization resources
	3.7.2 The i18n language selection
	3.7.3 The internationalization global function i()
	3.7.4 Creating a language resource file
	3.7.5 How to use it
	3.7.6 Text which shall not be translated
	3.7.7 Duplicate text

	4 Tfyh user and session management, forms
	4.1 Tfyh user and session variables
	4.1.1 The $_SESSION variable
	4.1.2 Securing user priviledge authenticity

	4.2 Tfyh – framework forms
	4.2.1 A typical form file
	4.2.2 configparameter_aendern.php
	4.2.3 dateiablage.php
	4.2.4 farben_aendern.php
	4.2.5 login.php and reset_password.php
	4.2.6 mail_versenden.php and mail_nachlesen.php
	4.2.6.1 Mail formatting

	4.2.7 tabelle_importieren.php

	4.3 Tfyh – framework pages
	4.3.1 alle_berechtigungen.php
	4.3.2 show_actions.php, show_changes.php, show_logs.php
	4.3.3 show_lists.php
	4.3.4 logout.php, construction.php, error.php
	4.3.5 maintenance.php, upgrade.php

	5 Acknowledgements

